
Complexity of Algorithm



• Algorithm is step by step procedure to solve a problem

• Once an algorithm is written it should be checked for its efficiency.

• That is how much time it takes and how much space it requires.

• The exact time can be determined by implementing the algorithm in a 
programming language and running in a machine.

• But this type of analysis will be confined to the machine and language  
used.

• The analysis should be general so that it can be applicable to all 
machine and all implementation.



• Suppose M is an algorithm and n is its size of input. The time and 
space used by the algorithm are two measures for efficiency of M.

• The time is measured by counting the number of key operations. 

• In sorting and searching algorithms for example, the number of
comparisons. That is because key operations are so defined that the
time for other operations is much less than or at most proportional to
the time for key operations.

• The space is measured by counting the maximum of memory needed 
by the algorithm.

• The complexity of an algorithm M is the function f(n), which gives the 
running time and/or storage space requirement of the algorithm M in 
terms of size n of input data.



• Worst Case: The Maximum value of f(n) for any possible input

• Best Case:minimum possible value of f(n) 

• Average Case: the expected value of f(n)

• The analysis of average case assumes certain probabilistic distribution 
of the input data.

• Linear Search(Data[n], item)

• K=1, loc=0

• While(loc==0 && k<=n){

• If(item==Data[k] loc=k;

• K=k+1}

• If(loc==0) write(“not found”);

• Else write( “item found at ”, loc);



• Worst Case f(n) = n

• Average Case: Assume that item does appear in data and is equaly
likely to occure in any position in the array. So the number of
comparisons will be 1, 2, 3, 4, …., n each withprobability 1/n then

• F(n)=1*1/n + 2*1/n + …+ n*1/n=(n+1)/2

• Big O Notation

• We know the f(n) the standard functions are

• log n, n log n, n^2, n^3, …, 2^n,  n!, n^n

Theorem: Suppose f(n) and g(n) are functions defined on +ve integers
with property that f(n) is bounded below by some multiple of g(n) for
almost all n. i.e suppose there exist a positive integer n0 and positive
number M such that for all n>n0 |f(n)|<= M*|g(n)|

• Then we may write f(n)= O(g(n)



• Example: P(n) = 8n3 - 13n^2 + 21n – 45

<= 8n3 + 13n^2 + 21n + 45  for all n

<= 8n3 + 13n^3 + 21n^3 + 45 n^3  for all n

<=87 * n^3 for all n

So P(n)=O(n3)

Linear Search: O(log n)

Binary Search: O(log n)

Bubble Sort: O(n^2)

Merge Sort: O(n log n)

Quick Sort: O(n logn n)



Time, space tradeoff

• Suppose a file of records contains name, phoneno, address and much 
additional information.

• Suppose you want to sort (arrange the records in alphabetical order) 
by name. 

• It will take more time if there are large number of records, because 
sorting will need interchange of records.

• The sorting time can be decreased if we take another file called index 
file with two fields (name and pointer). The pointer will contain the 
address of the actual record.  



Phone no Name Address Other fields…

8895955560 rama berhampur

8895882345 hari cuttack

8895432689 gopal puri

8895763669 madhu Balesore

Name Pointer

rama

hari

gopal

madhu



• Now instead of sorting the main file, if we sort the index file it will
take less time., because only two fields will be interchanged while
sorting. But in this case extra space is used.

• Clearly this trade off of space for time is not worth expense.

• Instead of sorting each time, we can maintain the index file as sorted
file by adding one more pointer field in each record. This pointer will
point to the next index record in sequence.

• In this case we have to insert the new index record such that the 
ordering of the index file will not be altered.

• This Solution will be more appropriate.

• But this will take some more space.

• That means when we want to decrease the execution time, we have
to sacrifice some space.


